附註:Includes bibliographical references and index.
1. Equilibrium Solutions, Stability, and Linearized Stability -- 2. Liapunov Functions -- 3. Invariant Manifolds: Linear and Nonlinear Systems -- 4. Periodic Orbits -- 5. Vector Fields Possessing an Integral -- 6. Index Theory -- 7. Some General Properties of Vector Fields: Existence, Uniqueness, Differentiability, and Flows -- 8. Asymptotic Behavior -- 9. The Poincare-Bendixson Theorem -- 10. Poincare Maps -- 11. Conjugacies of Maps, and Varying the Cross-Section -- 12. Structural Stability, Genericity, and Transversality -- 13. Lagrange's Equations -- 14. Hamiltonian Vector Fields -- 15. Gradient Vector Fields -- 16. Reversible Dynamical Systems -- 17. Asymptotically Autonomous Vector Fields -- 18. Center Manifolds -- 19. Normal Forms -- 20. Bifurcation of Fixed Points of Vector Fields -- 21. Bifurcations of Fixed Points of Maps -- 22. On the Interpretation and Application of Bifurcation Diagrams: A Word of Caution -- 23. The Smale Horseshoe -- 24. Symbolic Dynamics -- 25. The Conley -- Moser Conditions, or "How to Prove That a Dynamical System is Chaotic" -- 26. Dynamics Near Homoclinic Points of Two-Dimensional Maps -- 27. Orbits Homoclinic to Hyperbolic Fixed Points in Three-Dimensional Autonomous Vector Fields -- 28. Melnikov's Method for Homoclinic Orbits in Two-Dimensional, Time-Periodic Vector Fields -- 29. Liapunov Exponents -- 30. Chaos and Strange Attractors -- 31. Hyperbolic Invariant Sets: A Chaotic Saddle -- 32. Long Period Sinks in Dissipative Systems and Elliptic Islands in Conservative Systems -- 33. Global Bifurcations Arising from Local Codimension -- Two Bifurcations -- 34. Glossary of Frequently Used Terms.
摘要:This updated volume, for advanced undergraduate, graduates and researchers, is an introduction to applied nonlinear dynamics and chaos. The author has placed emphasis on teaching the techniques and ideas which will enable students to take specific dynamical systems and obtain some quantitative information about the behaviour of these systems.